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Abstract—Today’s Internet services rely heavily on text-based
passwords for user authentication. The pervasiveness of these
services coupled with the difficulty of remembering large numbers
of secure passwords tempts users to reuse passwords at multiple
sites. In this paper, we investigate for the first time how an
attacker can leverage a known password from one site to more
easily guess that user’s password at other sites. We study several
hundred thousand leaked passwords from eleven web sites and
conduct a user survey on password reuse; we estimate that 43-
51% of users reuse the same password across multiple sites.
We further identify a few simple tricks users often employ to
transform a basic password between sites which can be used by an
attacker to make password guessing vastly easier. We develop the
first cross-site password-guessing algorithm, which is able to guess
30% of transformed passwords within 100 attempts compared to
just 14% for a standard password-guessing algorithm without
cross-site password knowledge.

I. INTRODUCTION

Text passwords are the most common mechanism for
authenticating human users of computing systems, particularly
on the Internet. Password security has become a key research
interest due to the pervasiveness of modern web services
and their increasingly critical nature. Passwords form the
foundation of security policy for a broad spectrum of online
services, protecting users’ financial transactions, health records
and personal communications, as well as blocking intrusions
into corporate, power grid, and military networks.

Security can be undermined if passwords are easy to guess
and research has consistently shown that users tend to choose
simple passwords that are easy to remember [20], [33]. To
counter this, online services often make use of password
composition policies (e.g., “the password must contain a mix
of upper- and lower-case letters and at least one number”), or

password meters to help users understand the strength of their
passwords. Studies have shown that password composition
policies along with password meters (or verbal notifications)
do help users to choose stronger passwords [35], [44], [46].
However, they also increase user fatigue.

Unfortunately, the number of passwords a user must re-
member continues to increase, with typical Internet user es-
timated to have 25 distinct online accounts [10], [11], [32].
Because of this, users often reuse passwords across accounts
on different online services. Password reuse introduces a secu-
rity vulnerability as an attacker who is able to compromise one
service can compromise other services protected by the same
password, reducing overall security to that of the weakest site.
Password reuse cannot be prevented by traditional composition
policies or meters, as these tools only see passwords at a
single site. Recent high-profile leaks of large numbers of
passwords (including 55 000 accounts from Twitter [1], [12],
[16], 450 000 accounts from Yahoo [17]–[19], and 6.5 million
accounts from LinkedIn [2], [6], [8]) demonstrate that attackers
can potentially gain huge lists of valid credentials for use in
cross-site password attacks.

Beyond attacks exploiting exact password reuse, it is an
open question if an attacker can use knowledge of a user’s
password at one site to more easily guess a different password
chosen by the same user at another site. In this work, we study
this question. We examine several leaked password data sets
to measure password reuse across Internet sites and find that
exact reuse of passwords is often mitigated by the fact that
different sites have different complexity policies. However, we
also find that users often use simple tricks to work around
these different policies, for example making small edits to a
common passphrase (e.g., adding a number 1 to the end of
a password used at another site). We find that users typically
use a very small set of simple rules to make these edits which
can vastly improve an attacker’s ability to guess passwords
at other sites. For example, we were able to guess 30% of
non-identical leaked password pairs within 100 attempts (10%
password pairs required less than 10 attempts) while existing
password cracking libraries (like John the Ripper [4]) were
able to crack 14% of the passwords.

In this work, we make the following key contributions:
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• An empirical estimate of the rate of direct password
reuse for accounts controlled by the same user at
different websites, 43%, based on the largest data set
yet collected for this purpose.

• Extensive analysis of the similarity of non-identical
passwords from the same users across different online
accounts. This sheds light on how users modify their
password for reuse across different sites, as well as the
specific transformation patterns users use when faced
with various password composition policies.

• We conduct a survey to understand users’ behavior
in password construction across different online ac-
counts. This survey sheds light on how people use
transformation rules to modify their existing pass-
words for different online accounts.

• A cross-site guessing algorithm which uses a leaked
password at one site to produce guesses for passwords
potentially used by the same user at other sites.
We evaluate the feasibility of our guessing algorithm
under both offline and online attack scenarios.

The rest of the paper is organized as follows: Section II
gives an overview of some password composition policies and
related work. Section III introduces our measurement studies
and results. We summarize our survey results in Section IV. We
describe the basic design principle of our guessing algorithm
in Section V. Finally we discuss some implications of our
research in Section VI and conclude in Section VII.

II. BACKGROUND AND RELATED WORK

To better understand how passwords are composed we
first look at some of the most frequently used password
composition policies. We will then summarize recent academic
literature in the field of password analysis.

A. Password Composition Policies

The hardest passwords to crack are random character
strings. However, such passwords are considered too difficult
to remember in many applications. Given the choice, human
users typically produce a highly-skewed distribution of pass-
word choices reflecting common semantics that ease recall
(e.g., incorporating a word or number sequence with special
meaning). To prevent users from selecting passwords that are
too simple (and therefore potentially common), designers of
password authentication mechanisms often impose a password
composition policy, comprising a set of rules that constrain the
length and formation of passwords. Here is an example policy:

I. Passwords must not contain the user’s entire
name/user ID.

II. At least n characters (usually n � 6).

III. Passwords must contain characters from two or more
of the following four categories:

1. Uppercase characters (A through Z)
2. Lowercase characters (a through z)
3. Base 10 digits (0 through 9)
4. Non-alphanumeric ASCII characters:

˜!@%ˆ&* -+=—(){}[]:;”‘’<>,.?$\
More advanced policies can be used (e.g., NIST guide-

lines [25]) which may further increase guessing difficulty.
However, password policies usually instill a tradeoff between
usability and security. Complex policies lead to password
fatigue, complicating usability of the service and potentially
decreasing security by encouraging users to write down or
electronically store lists of passwords. Because of this, the ma-
jority of online services today use relatively simple password
composition policies, leaving password choice up to users.

To help users understand the security of their passwords a
password meter can be used. However, password meters have
been shown experimentally [46] and in practice [21] to make
a relatively modest impact on password choices. Furthermore,
designers of password meters must make assumptions about
the way attackers will guess passwords (e.g., brute force). An
attacker with better knowledge of how the user constructed the
password may be able to easily guess a password designated
as strong by a password meter.

B. Related Work

There are alternatives to passwords, such as biometrics,
public-key certificates, and hardware tokens. However, au-
thentication using text-based passwords remains the de facto
standard for authentication in today’s Internet. Passwords have
several advantages over alternative schemes, including the
lack of need for custom hardware, ease of deployment and
incorporation with existing services, their simplicity, and lack
of need to memorize or store complex cryptographic keys [22].

A large body of research has been conducted in understand-
ing the security of user-created passwords. For example, there
has been studies that look into understanding users’ reaction to
visual and textual based feedback provided by password meters
[46]. Others have looked at the strength of different password
composition policies [21], [35], [41], [44]. These studies have
shown that users do tend to create stronger passwords in the
presence of password composition policies accompanied with
password meters. Interestingly, Bonneau et al. [24] showed that
most websites do have some password policy, but provide no
strength meter.

There have also been studies that analyze password attack
strategies beyond brute force and dictionary attacks. The
most well-known password guessing algorithms are based
on Markov models and probabilistic context free grammars.
Markov chain-based modeling of substrings with parametric
lengths was first proposed by Narayanan and Shmatikov [39].
In their approach they use a training set to obtain the proba-
bilities of generating candidate substrings with certain length.
Their new dictionary, which comprises a list of all possible
candidate passwords is then checked across a test set in
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decreasing probability. Weir et al. [48] construct a probabilistic
context free grammar (PCFG) for generating new mangling
rules to increase the set of trial passwords to guess. Their
PCFG is generated from a training set and then evaluated
against a distinct test set. In both works all training and
testing sets are obtained from publicly leaked passwords. There
have also been studies that have done extensive comparisons
among these guessing algorithms [29], [34]. All of these works
focus on cracking passwords in an offline scenario where
the attacker is not bounded by the number of guesses he/she
can make. However, online services often rate-limit password
attempts. Hence in contrast to these prior works, we evaluate an
attacker with a limited number of guesses but leveraging leaked
password information and knowledge of how users modify
passwords across sites.

Florêncio et al. [32] monitored password habits of half
a million users over a three months period. Their study
revealed that the average user has 6.5 passwords, each of
which is shared across 3.9 different sites. However, their study
only considered identical passwords between sites, and not
related ones. Thus, while we can consider their estimates of
exact password reuse to be the best available, they did not
study transformation rules or similarity of passwords between
different sites, which is the main focus of our paper.

The work of Zhang et al. [49] is perhaps the most closely
related to ours. Their paper looked at how users modified their
passwords when they were forced to change them due to a
password expiration policy. They created a generic algorithm
that could guess future passwords based on a user’s previous
passwords. However, their analysis is based on passwords from
a single source (staff accounts at the University of North
Carolina Chapel Hill) and thus all passwords fulfill the same
password composition policy. In our case, we model a more
general attacker who is able to leverage the leaked password
of a given user to guess that user’s password on other Internet
sites. Because of this, we not only have less training data per
user but also have to deal with different composition policies
for different web sites.

There has also been research on defending against cross-
site password attacks by deploying password management
tools like PwdHash [43]. However, even if PwdHash were
universally deployed, password reuse would still be a problem.
An attacker could still take a list of hashed passwords from
one site and brute-force them (with the extra PwdHash round
of hashing), then attempt to reuse recovered credentials at
other sites (applying the PwdHash algorithm specific to the
other site). Furthermore, Chiasson et al. [26] analyze the
usability of different password management tools and conclude
that password managers are not sufficiently usable for most
web users. This has been borne out in practice as update
remains low, even though PwdHash users are currently well-
protected because there are so few that attackers will ignore
them. Password reuse remains a real problem that is worth
quantifying because most improvements have proved far too
expensive to deploy [31].

TABLE I. SOURCES OF DATA

Site # Year Hashed?
csdn.net 6428630 2011 no

gawker.com 748559 2010 yes
voices.yahoo.com 442837 2012 no

militarysingles.com 163482 2012 yes
rootkit.com 81450 2011 yes

myspace.com 49711 2006 no
porn.com 25934 2011 no

hotmail.com 8504 2009 no
facebook.com 8183 2011 no
youporn.com 5388 2012 no

III. MEASUREMENT STUDY

We would first like to understand how often users reuse
passwords across sites and the specific approaches they use
to vary their password at different sites (e.g., to work around
different composition policies). To explore these questions, we
conduct a measurement study.

A. Collection of Data Set

Our goal is to correlate user passwords across Internet sites.
To do this, we collected publicly available leaked passwords
over a period of several years from pastebin.com

1 and other
online sources. The provenance of these data sources varies but
most are the result of either SQL injection attacks or phishing
campaigns.2 It would be unethical to verify the validity of
the data directly by attempting to use the credentials, and in
some cases many of the accounts have long since expired or
changed passwords. However, all of the data sources we used
were publicly announced and none had the veracity questioned
by the affected web site.

For our analysis we were only able to use leaked data sets
with both user identifiers (in the form of email addresses) and
passwords. As a result some prominent password leaks from
sites like RockYou, Twitter, or LinkedIn could not be used.
For a summary of our data sets, see Table I.

We then analyzed these data sets to find passwords belong-
ing to users for whom we have at least one other password,
matching up users by their hashed email addresses. We ended
up with 6077 unique users for which we had a minimum
of two leaked passwords from different websites. Table II
shows the number of passwords per user. As we can see from
Table II, for most users we had only 2 leaked passwords (the
maximum we observed was 6). Some of the passwords were
in plaintext while others were hashed (unsalted) with MD5. To
better facilitate string comparison we inverted as many of the
hashes as possible using the John the Ripper toolkit [4]. For
the remaining hashes we searched one of the largest online
database of 8.7 billion MD5 hash preimages [7] and we were
able to decrypt all but 12 of them, which we discarded (less
than 0.2% of our data).

1Some of these leaked passwords are no longer available online.
2All of the data sets were leaked as MD5 hashes or as plain texts, and in

no case are we confining our analysis to “only what an attacker could crack”.
We confirmed this by examining the complexity of the leaked passwords.
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TABLE II. PASSWORDS PER USER

No. of passwords Percentage
2 97.75%
3 1.82%
4 0.26%
5 0.15%
6 0.02%

B. Password Composition Policies at Different Sites

To put our results in context, we manually investigated
the password composition policies of the websites from which
user passwords were leaked. All the sites3 (except for the
pornographic web sites and hotmail) had a password compo-
sition policy requiring use of at least six characters. Porno-
graphic web sites either had no restriction or a restriction
of using at minimum four characters in creating a password.
Hotmail had the most restrictive policy where a password
had to have at least eight characters. To put our results in a
larger context, we describe here password composition policies
across a broader spectrum of popular Internet sites obtained
from Alexa [3] under different categories. In particular, we
randomly selected a set of popular sites from the top 25 sites
under several different categories (Table III) and manually
determined their composition policies. We found the following
constraints across different web sites (we assign each a short
code name to ease reference to them later in the paper):

• Char5: Minimum 5 characters.4

• Char6: Minimum 6 characters.
• Char8: Minimum 8 characters.
• Char6LU: Minimum 6 characters containing at least

one lowercase letter and one uppercase letter.
• Char8DSU: Minimum 8 characters containing at least

one number, symbol, or uppercase letter.
• Char8LDS: Minimum 8 characters, with at least one

letter (either uppercase and/or lowercase) and at least
one number and/or symbol.

• Char6D: Minimum 6 characters containing at least
one letter and one number.

• Char6-12: Contains 6-12 characters. Characters can
be letters, digits or even symbols.

• Strong1: Contains 7-32 characters with at least one
letter and one number. Cannot include special charac-
ters (&, %, *, etc.). Cannot be the same as user ID and
cannot be the same as any of the last five passwords
used.

• Strong2: Contains 8-20 characters with at least one
letter and one number. Cannot include any spaces or
the following special characters $, <, >, &, ˆ, !, [,
]. Cannot be the same as user ID. Password is case-
sensitive.

• Strong3: Contains 8-20 characters with at least one

3We couldn’t check www.rootkit.com because it is currently down
4Characters can be letters, digits or symbols.

TABLE III. PASSWORD COMPLEXITY POLICIES FOR POPULAR WEB
SITES

Category Website Constraints

Social

Facebook Char6
Twitter Char6
LinkedIn Char6
Google+ Char8
Pinterest Char6

Blogging
Blogger Char8
Tumblr Char5
WordPress Char6

Email

Gmail Char8
Yahoo Char6
Hotmail Char8
Outlook Char8
AIM/AOL Char6

Shopping

Amazon Char6
Ebay Char6LU
Target Char8DSU
BestBuy Char6D
Walmart Char6-12

Financial

Chase Strong1
Bank of America Strong2
American Express Strong3
Paypal Char8LDS

letter and one number. May include the following
characters: %,&, , ?, #, =, -. Cannot have any spaces
and will not be case sensitive. Must be different from
user ID.

Table III summarizes the different password composition
policies for different popular web sites. As we can see, most of
the non-financial web sites have similar password composition
policies, which could possibly encourage users to use identical
or similar passwords across different accounts.

C. Password Similarity

Next, we analyze our password data set to measure the
similarity between different passwords used by a given user.
For this purpose we looked at 9 string similarity metrics:

• Distance-like functions: Manhattan [36],
Cosine [27]. These functions compute the distance
between two strings by first mapping each string into
a point in a multidimensional space (each character
can be thought of as a dimension with their frequency
being the dimension value) and then computing the
distance between those points.

• Edit-distance like functions: Levenshtein [38],
Damerau-Levenshtein [28]. These functions determine
the number of edit operations (insertion, deletion,
replacement, transposition) required to transform one
string into another.

• Token-based distance functions: Dice [30], Over-
lap [37]. These functions first split the strings in
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smaller tokens (i.e., bigrams) and then compute the
similarity between them.

• Alignment-like functions: Smith-Waterman [45],
Neddleman Wunsch [40], Largest Common Subse-
quence (LCS). This set of functions provide similarity
scores that reflect the largest alignment or subsequence
between a pair of strings.

For the following set of similarity experiments we ran-
domly sample 1000 password pairs to ensure the total sample
size in each the experiment is equal. We first investigated the
similarity score among passwords from different users for the
same website. We took 1000 password pairs randomly where
each password belonged to different users and then computed
the similarity among them. Figure 1(a) shows the CDF of the
similarity score under different metrics. We can see that the
CDF quickly rises for smaller similarity scores which signifies
that users within the same website use significantly different
passwords by almost any measure.

Next we randomly sampled 1000 password pairs from
randomly selected users at (Figure 1(b)). Again we see that the
CDF quickly climbs towards its maximum value for smaller
similarity scores. Thus we conclude that passwords selected
by different people are quite different.

Next we wanted to see how similar passwords chosen by
a given user across different web sites are. For this purpose
we calculated the similarity score of passwords used by the
same user across different sites. We again sampled 1000
random password pairs. Figure 2(a) shows the CDF of the
similarity scores. In this case we see that almost 40% of the
passwords have similarity score in the range of [0.9, 1.0]. Next
we wanted to investigate the similarity score of passwords
that were not identical, so we randomly sampled 1000 users
whose passwords across websites were not identical. Figure
2(b) shows the similarity of nonidentical passwords. Again
we see that almost 30% of the nonidentical passwords have
similarity scores in the range of [0.8, 1.0], thus indicating that
there is non-trivial similarity among the passwords that users
use across different web sites.

Upon looking more closely into the leaked passwords, we
found that a significant fraction of the users used passwords
that were substrings of one another. To investigate this further,
we clustered the passwords into the following three groups:

1. Identical: Same password across different web ac-
counts.

2. Substrings: Passwords from different web account are
substrings of one another.

3. Other: Passwords are either completely different or
follow more complex transformations.

This grouping also helps us in identifying the probable trans-
formation rules (something we investigate in more detail later).
The fraction of passwords belonging to each group is provided
in Table IV.
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Fig. 1. Password similarity for (a) passwords chosen by random users of the
same web site (b) passwords chosen by random users of different sites.

TABLE IV. PASSWORD RELATIONSHIPS

Type Percentage
Identical 43%
Substring 19%

Others 38%

From Table IV we see that 19% of passwords are substrings
of one another, or one-third of all non-identical passwords.
In these cases, simple insertion or deletion operations are
sufficient to transform one password into another. We also
identified what fraction of these insertion/deletion operations
were taking place at the beginning or end or at both ends
of a string. Table V summarizes these fractions. As we can
see, the most frequent insertion/deletion operation(s) occur at
the end of the string. Next, we determined the average length
of insertions/deletions at these locations. Table VI shows that
the overall average length of each insertion/deletion is about
2-3 characters. We also looked at what unigram, bigram and
trigram character sequences occur more frequently than others.
Appendix B shows the top 20 such n-grams used for our
insertion operations.
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Fig. 2. Password similarity for (a) all pairs of passwords chosen by the same
user (b) non-identical pairs of passwords chosen by the same user. We find
that users inherently tend to reuse/slightly modify their passwords.

TABLE V. LOCATION OF INSERTION/DELETION

Location Percentage
Start 10%
End 88%

Both Ends 2%

IV. SURVEY

To gain insight into users’ behavior and thought processes
when creating passwords for different websites, we conducted
an anonymous survey of users at different universities, includ-
ing students and professional staff across several academic
departments. It is worth noting that through university ini-
tiatives, these participants have been exposed to fairly sub-
stantial documentation and training regarding the sensitivity of

TABLE VI. AVERAGE LENGTH OF INSERTION/DELETION

Location Average Standard Deviation
Start 3.37 2.01
End 2.25 1.42

Both Ends 3.77 1.83

password information and the importance of choosing secure
passwords. We received a total of 224 responses. A copy of our
survey questions are available at [15]. In the survey participants
were asked several questions about how they constructed their
passwords for different online accounts. The goal of the survey
was to better understand why and to what extent passwords
used by these users differed across different online accounts.
The results of the survey and our findings are given below.

A. Survey Responses

We started our survey by giving the participants a collection
of scenarios in which they would create a new email account
and asked them to think about the password that they would
use for that account. Next, we asked them a series of ques-
tions regarding their choice of password. The first question
determined how they chose their passwords and how similar
the resulting password selection was to any of their existing
passwords. The response to this question is summarized in
Figure 3. We can see that 77% of participants would either
modify or reuse existing passwords. We also found from
Table IV that 43% of password pairs were identical, which
is comparable to our survey result of 51%.

Prefer not to answer

Create an entirely new password

Modify an existing password

Reuse an existing password

0% 10% 20% 30% 40% 50% 60%

2%

21%

26%

51%

Fig. 3. Survey responses to the question: “How do you choose your password
for a new email account?” We find that the majority of participants either
modified or reused an existing password.

Next, we investigated what forms of transformation rules
people use when they modify existing passwords for the pur-
poses of reuse. From Figure 4(a), we can see that certain trans-
formation rules are substantially more common than others.
Rules like adding a number at the end or front, capitalization
of letters and adding a symbol at the end or front were the most
popular choices. These results match what we observed in Sec-
tion III-C, where 98% of insertions/deletions occurred at either
the front or end of the password. To investigate this further,
we investigated why people were modifying or reusing existing
passwords. Figure 4(b) summarizes our findings. We find that
users modify their passwords to fulfill password constraints
enforced by the different websites. When users come across
a website with different or more restrictive constraints, they
tend to introduce small modifications to existing passwords to
work around those constraints.

We then wanted to determine which locations in passwords
were subject to the majority of modifications. Hence, we
asked participants where they would place symbols, digits,
and uppercase letters when they modify an existing password
for reuse (Figure 5). Users tended to prefer placing symbols
at either the middle or the end. However, we see a more
significant bias for placement of digits and letters. Most
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Email address

Use adjacent keys on the keyboard

Reversing

Prefer not to answer

Other

Using website specific information

Substring movement

Leet transform

Adding a symbol at the end or front

Capitalization of letters

Adding a number at the end or front

0% 10% 20% 30%

1%

2%

3%

3%

4%

6%

8%

10%

17%

20%

26%

(a)

Prefer not to answer

Other

Periodic password update enforcement

For ease of memorization

Increase security

Password policy enforced by the site

0% 10% 20% 30% 40%

1%

1%

18%

23%

24%

33%

(b)

Fig. 4. Survey responses to the questions: (a) What transformation rules do
you use? (b) Why do you modify existing passwords? We find that adding
digits or symbols either at the front or end is a popular transformation rule used
by users. Furthermore, we find that people tend to modify existing passwords
to fulfill password constraints enforced by the different websites.

participants insert digits at the end of password strings, but
tend to insert uppercase letters at the beginning. These results
match our observations in leaked data sets (see Table V). We
also asked a question where we wanted to know how the digits
used in passwords were related to the user, interestingly we did
not find any dominant relationship (see Appendix C).

Next, we asked a set of questions to find how many
different types of passwords users typically use, as well as
how they go about remembering their passwords. From table
III we saw that financial websites imposed stronger constraints
in constructing passwords. Assuming people generally tend to
value financial accounts more than other types of accounts, it is
possible that people may maintain different types of passwords
for different types of online account. Figure 6 summarizes
the responses from our participants. We find that 65% of the
participants maintained no more than four different types of
passwords. A majority (61%) of the participants memorized
their passwords.

We collected some limited demographic information about
our participants. The overwhelming majority (93%) of our
participants are aged 18–34. We also found that most of the
participants (92%) have at least a bachelor’s degree. This is
expected as we sent out our survey to different universities.
We conjecture that our survey population of young, highly
educated users is more concerned about password security than
the general population, suggesting we may be underestimating
the problem.

Prefer not to answer

Other

At the beginning (first 2 characters)

In the middle

At the end (last 2 characters)

0% 10% 20% 30% 40% 50%

2%

5%

13%

36%

44%

(a)

Prefer not to answer

Other

At the beginning (first 2 characters)

In the middle

At the end (last 2 characters)

0% 10% 20% 30% 40% 50% 60%

1%

4%

16%

25%

54%

(b)

Prefer not to answer
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Fig. 5. Survey responses to questions: Where do you usually place (a)
symbols? (b) digits? (c) uppercase letters? It seems the majority of the
participants preferred placing symbols either at the end or middle of the
password string. For digits they preferred placing them at the end and for
uppercase letters they preferred placing them at the beginning.

V. GUESSING ALGORITHM

The results of our measurements and survey lead naturally
to the question: can an attacker, equipped with knowledge
of how users typically modify passwords across sites, more
easily guess user passwords? In this section, we will leverage
results from our studies to construct a cross-site password
guessing algorithm. Our guessing algorithm works as follows:
given one leaked password, it tries to guess passwords that
the same user might use for their other online accounts.5
First, we will discuss the different transformation rules that
are commonly used by users in modifying their passwords
(Section V-A). We then describe the details of our guessing
algorithm (Section V-B).

A. Prominent Transformation Rules

We start by investigating the most prominent transforma-
tion rules that we identified from our measurement studies (we
looked at 40% of the leaked passwords for transformation rules

5In practice matching accounts is usually trivial as the vast majority of
sites (> 90%) use email address as user IDs [24] so we do not consider this
problem further.
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Fig. 7. Demographic information about our 224 survey participants age (a) and educational background (c).
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Fig. 6. Survey responses to questions: (a) How many different passwords do
you maintain? (b) How do you remember your passwords? We find that the
majority of participants maintain less than five different types of passwords
and most people memorize their passwords.

and tested our guessing algorithm on the remaining 60% data).
Table VII shows the most commonly used transformation
rules from our leaked password set with examples (we also
saw similar feedback from our survey) in decreasing order
of probability. We also list less common transformations in
Table VIII (also in decreasing order of probability). In addition,
we found several interesting transformation rules used by
our survey participants, such as adding a few random extra
characters (e.g. abcd �! abyzcd) or adding emoticons at
the end (e.g abd�!abd:)). It may be possible to improve
our results by incorporating these transformations into our
guessing algorithm, but to preserve simplicity of our algorithm
we do not consider these additional transformations in this
paper. We will show that simple transformations are sufficient
to crack a moderate fraction of the unknown passwords.

TABLE VII. PROMINENT TRANSFORMATION RULES

Transformation Rule Example
sequential key qwerasdf �! 1234qwer

sequential alternative key 123456 �! !@#$%ˆ
sequential alphabet abcde �! uvxyz

capitalization naughty �! NAUGHTY
reverse 123456 �! 654321

leet password �! pa$$w0rd
substring movement gzwz0204 �! 0204gzwz

TABLE VIII. LESS PROMINENT TRANSFORMATION RULES

Transformation rule Example
character swap 1abcd2 �!2abcd1

subword capitalization redcode �! RedCode
subword movement redcode �! codered

word repetition chat�! chatchat
email address xiaona �! xiaona@gmail

website forget@csdn �! forget@rootkit

B. Designing Our Guessing Algorithm

Our goal is to design a simple guessing algorithm that,
given a user’s password for a particular site, can determine
the user’s password for other sites with a low enough number
of guesses to make online attacks feasible. In particular, given
an input password from one site, our algorithm generates an
ordered set of candidate passwords, with the goal of the target
password in use at another site being ordered early in the list
(to minimize the number of guesses required).

Our guessing algorithm is shown in Algorithm 1. Its
operation consists of several phases executed in the order
given below. After each phase, we check if we have guessed
the desired target password. We revert back to the original
password after each step.

Character sequence: We attempt to look for known pattern
sequences, such as adjacent keys on the keyboard, alphabetical
ordering patterns, and sequential alternate key (e.g., holding
down “alternate keys” such as Shift or Control while typing
a sequence) inside the input password. Once we find these
patterns, we apply the corresponding transformations sequen-
tially. The intuition here is that users who use such sequential
patterns are likely to use similar patterns in their passwords
for other sites.

In more detail, we first split the password into tokens,
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Algorithm 1 Guess new passwords from leaked passwords
Input: Input password ↵ and target password �

Intermediate result: Candidate password ↵

0

Output: Cracked or Not cracked
Check (↵0

,�): if ↵0 = � return Cracked
if ↵ contains any sequential pattern then

Sequential Transformation(↵)!↵

0

Check (↵0
,�)

end if
if len(↵)>6 then

↵

0  Deletion(↵)
Check (↵0

,�)
end if
if len(↵)<10 then

↵

0  Insertion(↵)
Check (↵0

,�)
end if
Capitalization(↵)!↵

0

Check (↵0
,�)

Reverse(↵)!↵

0

Check (↵0
,�)

Leet(↵)!↵

0

Check (↵0
,�)

Substring Movement(↵)!↵

0

Check (↵0
,�)

Subword transformation(↵)!↵

0

Check (↵0
,�)

return Not Cracked

where each token represents a sequence of characters that fall
under some pattern (e.g., ‘qwerasdf’ would be split into two
parts ‘qwer’ and ‘asdf’, as each part represents an independent
set of sequential characters from the keyboard). We then try
out different permutations of tokens as candidate passwords.
If we do not achieve the target password, we then modify
each token by either extending the token to include the next
character(s) in the sequence, or by replacing the token with a
similar size token belonging to the same category. For example,
‘qwer’ could be extended to ‘qwert’, or could be replaced
by ‘1234’. To increase the likelihood of choosing the right
replacement, we analyze the RockYou password list [13], one
of the most well-known and commonly analyzed password
leaks with about 32 million leaked passwords, to find the most
common sequences (we list the most common replacements
used in our guessing algorithm in Appendix D). If this does
not succeed, finally, we try all possible permutations of the
modified tokens. We also use reverse transformation (described
later on) as an additional transformation to each candidate
password to take into account reverse sequential characters.

Deletions: Next our guesser tries deletion transformations.
In the deletion transformation, we first try iteratively deleting
characters belonging to the following set {Digit, Symbol, Up-
percase letter, Lowercase letter}. The intuition behind this is
that people usually add characters belonging to these different
categories to fulfill different password composition policy. So
we initially try deleting digits, followed by symbols, and so
on. After each character deletion we check if we have acquired

the target password. If the previous transformation does not
produce the desired target password we revert back to the
original password and try sequentially deleting characters from
the front of the string, then the back, then combinations of
both. As a heuristic, we only applied deletion transformations
if the the password length is greater than six (in section
III-B we saw that most websites have a password policy of
containing at least six characters).

Insertions: Our guesser next tries insertion transformations.
From our measurement studies (on the leaked data and from
our survey) we saw that inserting numbers or symbols at the
front or end was the most popular choice. We first attempt
inserting numbers and symbols at the front and end. We
limit ourselves to up to two insertions (insertions of length
three would mean an exponential increase in the number of
transformations). Next we concentrate on different password
composition policies requiring passwords to contain characters
from the following four groups: {Digit, Symbol, Uppercase
letter, Lowercase letter}. We first determine what types of
characters the input password contains, then we insert indi-
vidual characters from the missing groups. The probability of
inserting characters from these groups are calculated from the
RockYou list. Finally to address longer insertions we compute
the top 20 probable bigrams and trigrams (we consider only the
top 20 to keep the number of guesses minimal; distribution of
the bigrams and trigrams are shown in Appendix B) from the
RockYou list and apply them to our input password to generate
candidate passwords. As a heuristic, we only apply insertion
transformations if the length of the resulting password remains
less than ten characters. We choose 10 as the upper limit of a
password length because 90% of passwords in RockYou data
set had a length of less than or equal to 10 [14] (see Appendix
A for more information).

Capitalizations: The capitalization transformation first at-
tempts to capitalize all letters in the password at once. If the
target password is not obtained, it then tries capitalizing the
letters from the front of the string, then the back, and then
combinations of both.

Reversals: The reverse transformation simply reverses the
input password.

Leet-speak: For the leet transformation we first try the
popular leet transforms (o $ 0, a $ @, s $ $, i $ 1, e $
3, t$ 7) and then try all possible leet transforms [5].

Substring movement: This transformation first splits the
input password into substrings where the delimiting character
belongs to the set {Digit, Symbol, Uppercase letter}. For
example ‘xyz@123’ would be split into three substrings: ‘xyz’,
‘@’, and ‘123’; using ‘@’ as the delimiting character. Next,
we sequentially try all possible permutations of the substrings.
So ‘123@xyz’ would produced as a candidate password.

Subword modification: Here, we first split the input password
based on common English words, and then capitalize the first
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letter of each word. We also try rearranging the words in
different orders. For example ‘darkknight’ can to split into
‘dark’ and ‘knight’, so a possible candidate password would
be ‘DarkKnight’.

We apply transformation rules in the above-mentioned
order to generate candidate passwords. We found this or-
dering to be most efficient after sampling 1000 random
nonidentical password pairs (i.e., we analyzed 1000 random
nonidentical password pairs and found the above ordering
to generate the least number of guesses compared to other
orderings). We use the following minimization formula: O =
argmini2|T |! Guesses(Oi), where T represents the set of
transformations, O represents an ordering of the transforma-
tions and Guesses returns the number of guesses needed using
a particular ordering. Recall that we revert back to the main
password before applying the next transformation. Hence the
success rate does not change with the order, but the number of
guesses required may vary based on the order selected. One
point to note is that our guessing algorithm essentially applies a
fixed order of transformations to the input password as opposed
trying all possible transformations. This bounds the number of
possible guesses that we can make.

C. Evaluating Our Guessing Algorithm

In this section we evaluate the performance of our guessing
algorithm in terms of the number of guesses required to crack
the target password. As a baseline, we compare our approach
with the following three plausible approaches:

• RockYou guesser: This guesser tries to guess pass-
words based on the 32 million leaked passwords
from the RockYou social application site. Under this
strategy we first build a list of words along with
possible prefix-suffix insertions. To determine the pos-
sible prefix-suffix insertions we adopt two strategies.
For a given leaked password, we first look for a
word inside the leaked password that appears in an
English dictionary [9] (we use Moby Words II, one of
the largest wordlists in existence) and determine the
possible prefix-suffix insertions. If we do not find any
matching English words, we then look for other leaked
RockYou passwords that have the leaked password as
a substring, to determine the set of candidate prefix-
suffix insertions. We do this for all the passwords
in the RockYou data set. Once complete, we have a
mapping of possible prefix-suffix insertions for a large
set of words (either English words or other leaked
passwords).

• Edit Distance (ED) guesser: This guesser tries to
make edit transformations such as insertions, dele-
tions, replacements or substring movements, to turn a
leaked password into a probable candidate password.
We used the ED based guesser implemented by Zhang
et al. [49]. However, we did not train our model as
they did. Instead we inserted characters in decreasing

TABLE IX. GUESSING SUCCESS

Category Approaches
from Table IV RockYou List(%) ED Guesser(%) Our(%) JTR(%)

Substring 4 66 85 15
Others 0 6 4 15

order of probability calculated from the RockYou
list so our results are not directly comparable to
theirs. The ED guesser applies edit transformations
at specific locations. Therefore, the total number of
possible transformations depends on the length of the
password. We apply edit distance of up to depth two,
as beyond this depth the number of transformations
becomes infeasibly large [49].

• John the Ripper (JTR): This guesser uses the John
the Ripper toolkit [4] in wordlist mode with word-
mangling rules enabled. JTR has 57 word-mangling
rules in its configuration file, along with a default
password list (password.lst). We append one of the
passwords from each pair from our data set into this
password.lst file. Next, we run JTR on the MD5
hashes of the remaining password of each pair (i.e.,
we first generated MD5 hashes of the remaining pass-
words and then ran JTR on them). We also compared
the performance of JTR without cross-site password
knowledge and it was able to crack 14% of the
non-identical passwords using the default 57 word-
mangling rules.

From Table IV we know that approximately 43% of
passwords in our data set (6077 unique users) were identical.
Hence, we concentrate on evaluating our guessing algorithm
only on the nonidentical passwords (the remaining 57% of
our data set). Table IX highlights the fraction of different non-
identical passwords correctly guessed by the three approaches.
We see that the RockYou-list based guesser does not provide
substantial benefit in guessing passwords across websites (we
therefore ignore this approach in later comparisons). John the
Ripper can guess approximately 15% for each category of
passwords. Both ED-guesser and our approach successfully
guessed a significant portion of the password pairs that were
substrings of one another. From Table IX it is evident that
password pairs that are neither identical nor substrings are
difficult to guess. For such password pairs JTR [4] performs
better as it has a large number of mangling rules to apply.
Leveraging such mangling rules could potentially improve our
results further, but it would also increase the number of guesses
significantly (JTR generated 159 907 and 162 742 candidates
for the ‘substring’ and ‘other’ categories respectively). We do
not focus on using complex mangling rules because we want
to show that simple transformations can successfully guess a
significant fraction of the passwords with a small number of
attempts.

We start by analyzing the number of guesses required
by each of the approaches. Figure 8 shows the cumulative
distribution of the number of guesses required for nonidentical
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passwords. We see that our approach can guess approximately
30% of the nonidentical password pairs successfully (10%
within 10 attempts). Compared to the ED-guesser our approach
requires significantly fewer guesses, thus making our approach
suitable for online attacks where the number of guesses is
limited to a fixed number. Most sites (>80%) do not effectively
rate-limit incorrect guesses at all [24], and those that do often
use complex algorithms to determine when to lock an account.
Both Facebook and Google will allow more than 10 guesses in
some circumstances. It is an arms race for attackers to avoid
getting accounts locked out, and success with fewer guesses
is better, but there is rarely a firm cutoff number.
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Fig. 8. Number of guesses needed to guess all nonidentical passwords. We
see that we need approximately 10 attempts to crack 10% of the nonidentical
password pairs.

Now let us look more closely into the number of guesses
required for each category of password other than the identical
category. Figure 9 shows the cumulative distribution of the
number of guesses required for each category of nonidentical
password. We can see that if the number of retries is limited to
10 then we can crack almost 30% of the password pairs that are
substrings of each other. We can crack 80% of the password
pairs that are substrings of each other within 100 attempts. ED-
guesser on the other hand requires several million attempts to
crack at most 65% of the substring password pairs. We can also
see that even though the ED-guesser cracks more passwords
in the “other” category the number of guesses required is
significantly higher compared to our approach. Because of
this, our approach is more suitable for online attack scenarios,
where rate limiting of password checking is common. If we
revisit figure 2(b) we see that approximately 30% of the
nonidentical password pairs have a similarity score in the range
of [0.8, 1]. We believe our guessing algorithm was successful in
predicting those similar passwords. To verify this we computed
the similarity score of all the password pairs that our guessing
algothim successfully cracked. Figure 10 shows the similarity
score of the cracked password pairs. We can see that majority
of the similarity scores lie in the range of [0.8, 1]. We also
looked into the similarity score of the password pairs that
we could not crack. Figure 11 highlights the similarity score

of the password pairs that we could not crack. As expected
the similarity score for non-cracked password pairs are low;
most of them have a similarity score in the range of [0.1, 0.5].
Thus we can say that our guessing algorithm can successfully
predict similar passwords and has quickly diminishing returns
afterwards.This is not a limitation, as a real-attacker could try
an approach like ours using knowledge of a leaked password
and then transition to a generic attack to generate a large
number of other guesses.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100  1000  10000  100000  1e+06  1e+07

C
D

F
 (

F
ra

ct
io

n
 o

f 
p
as

sw
o
rd

s 
cr

ac
k
ed

)

No. of guesses

Our approach: For Substrings
ED guesser:For Substrings
Our approach: For Others

ED guesser: For Others

Fig. 9. Number of guesses needed to guess passwords, broken down by
substring pairs and non-substring pairs. Our approach can guess 30% of the
substring pairs within 10 attempts.
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Fig. 10. Similarity score of cracked password pairs. Most of the similarity
scores lie within the range of [0.8, 1].

VI. DISCUSSION

In this section we discuss issues regarding ethics, ecolog-
ical validity, and the limitations of our methodology.

A. Ethical Considerations

Our results rely on passwords that are publicly avail-
able, even though they were originally gathered illegally. The
question of whether data acquired illegally should used by
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Fig. 11. Similarity score of non-cracked password pairs. Most of the similarity
scores lie within the range of [0.1, 0.5].

researchers is an active ethical debate (more on the ethics of
using public data of illicit origin for research is discussed in
[31]). That said, many of our data sets have been used in prior
scientific studies [23], [29], [34], [47], [48]. When conducting
our work, we use passwords and hashed email addresses.
We obtained approval from our institution’s IRB for our
survey related to password construction behavior. The survey
responses were recorded anonymously without any personally
identifying information on participants. We hope that our work
brings benefits to researchers and system administrators by
improving the understanding of cross-site password attacks,
which may lead to stronger measures to mitigate them.

B. Ecological Validity

To attain real-world measures of password-related behavior,
we surveyed participants anonymously. Most of our survey
participants are somewhat younger and more educated than
the general population, but more diverse than typical small-
sample password studies. Moreover, since users were sub-
mitting responses anonymously, we believe it would be non-
beneficial for them to provide false information. In addition,
all our password data sets represent real password data. We
compared results of our survey with our leaked password data
sets, and found similar observations, for example pertaining to
the location of insertion/deletion operations, and the fraction of
users using identical passwords across different websites. Thus,
we believe our findings are likely to hold true in practice, at
least for some classes of passwords and users.

C. Limitations

There are a number of limitations of our work. For
example, our study only pertains to text-based passwords,
as opposed to other authentication schemes like biometrics
or graphical passwords. That said, we feel the extreme per-
vasiveness of text based passwords makes them the most
useful mechanism to study. In future work it may be inter-
esting to see if our approach could be generalized to non-

text user-constructed passwords such as graphical passwords.
In addition, our guessing algorithm is relatively simple, not
leveraging more advanced models which may possibly improve
performance such as Markov Chain models [41] and other
algorithmic frameworks [49]. This was an intentional choice as
more complicated approaches are highly dependent on training
data, which we had a limited supply of. Our main goal was
to show that even using a fairly simple set of rules can
significantly improve attack performance.

Considering the category of a website is another feature we
wanted to study. But 97.75% of the users in our data set had
only two passwords (see Table II) and in most of the cases the
two passwords did not belong to websites of similar category.
So we did not have sufficient data to analyze if similar website
category influenced the choice of password reuse. However,
from our survey we observed that 65% of the participants
maintained no more than four different types of passwords
across different categories of websites (see section IV-A).

D. Countermeasures

Developing countermeasures to improve cross-site pass-
word security is challenging. Direct coordination across dif-
ferent sites is hard, as user account information is often
viewed as private, which may preclude direct sharing or
comparison of entered passwords. Single sign-on technologies
may help, but face challenges in deployment due to competing
provider interests and the difficulty of forming strong shared
security policies across administrative boundaries. Single sign-
on technologies may also worsen security: if the password
is compromised (e.g., via a phishing attack), security of all
participating sites is compromised. Two-factor authentication
is another viable option. In this authentication process a user
first provides his/her username and password; next the user is
asked to enter a verification code that is sent directly to the
user’s phone. Google and Twitter, among others have started
using such authentication scheme.

A first step to address this problem may be educating users
of the importance of using substantially different passwords
across sites. Our password guessing algorithm could be a
useful tool for users, as a user could input their passwords at
different sites and locally evaluate the difficulty of cross-site
guessing. A more ambitious approach would be to develop
a cross-site password security metric, deployed at online
services, based on our design. A password construction page
could compare the user’s entered password against that stored
at other participating sites to see if it can be easily guessed
using our techniques. To avoid sharing user data, sites could
employ privacy-preserving variants of our string comparison
operations. Several privacy-preserving operations for string
comparison (e.g., edit distance [42]) exist and could be lever-
aged for use here.

VII. CONCLUSION

To the best of our knowledge, our work comprises the
first analytical study of cross-site password security. To study
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this problem, we first conduct an analysis of real-world
user behavior, including a measurement study of real leaked
passwords combined with a user survey. We leverage the
results of this study to evaluate strategies that attackers can
use to infer passwords used at other sites, and develop a
cross-site password guessing algorithm. We observe that a
substantial portion, 43%, of users directly re-use passwords
between sites, confirming suspicion that this is a significant
security vulnerability. We further demonstrate that many users
introduce small modifications to their passwords across sites,
and many users share the same procedures for introducing
these modifications. However, these modifications are simple
enough that an attacker who is aware of typical user behavior
can significantly improve guessing efficiency. Our protoype
guessing algorithm is able to crack approximately 10% of
the nonidentical password pairs in less than 10 attempts and
approximately 30% such pairs in less than 100 attempts. This
makes a real security impact as an attacker with a leaked, non-
identical password can mount an online guessing attack with
orders of magnitude higher success than an attacker without a
leaked password.
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APPENDIX A
AVERAGE PASSWORD LENGTH

We analyze the average password length of the passwords
in the RockYou data set. Figure 12 shows the CDF of the
password length. As we can see from the figure 90% of the
passwords have a length of less than or equal to 10 characters
and 5% of the passwords have a length less than or equal to
5 characters. We therefore considered insertion and deletion
operation only if the given password’s length is in the range
of [6, 10] respectively.
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APPENDIX B
ANALYSIS OF ROCKYOU LIST

First, we look at the distribution of unigram insertions. This
is different from the character frequency count because we are
looking at insertions of such characters at the beginning or end
of existing words. Figure 13 shows the distribution.
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Next we calculate the insertion probabilities of some of the
top bigrams and trigrams. Table X shows the top 20 insertion
probabilities. As we can see from the table inserting number is
a popular trend among people. It would be interesting to know
how people chose these numbers. To figure this out we asked
a related question in our survey. The details of our findings
are available at Appendix C.

TABLE X. INSERTION PROBABILITY OF BIGRAMS AND TRIGRAMS

bigram Pr. trigram Pr.
08 0.027 123 0.015
01 0.016 087 0.0047
07 0.015 007 0.0047
23 0.014 083 0.0040
06 0.013 084 0.0040
09 0.013 089 0.0037
12 0.012 086 0.0036
05 0.011 666 0.0036
21 0.0097 085 0.0034
04 0.0096 man 0.0030
11 0.0093 143 0.0028
22 0.0096 boy 0.0026
02 0.0092 321 0.0022
13 0.0090 101 0.0022
03 0.0090 420 0.0021
69 0.0087 456 0.0020
00 0.0083 000 0.0019
10 0.0081 001 0.0019
88 0.0076 777 0.0018
20 0.0074 ita 0.0018

APPENDIX C
SIGNIFICANCE OF NUMBERS IN PASSWORDS

We asked our participants the following question - If you
use digits in your password then how are the digits in your
password related to you?. Figure 14 summarizes the responses
that we got from our survey. As we can see from figure 14,
43% of the people used numbers that are significant to them.
However, a significant fraction (42%) of the people chose the

‘Other’ option. We looked through their written responses and
found that most of them just used random numbers that they
could remember.

The current year

A phone number

An address

Prefer not to answer

A birth date

Other
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5%
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10%

15%
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Fig. 14. Survey responses to the question: If you use digits in your password
then how are the digits in your password related to you?

APPENDIX D
SEQUENTIAL SUBSTRING REPLACEMENT

We found the following sequential substring replacements
most popular - qwer ! [1234, 1qaz], qwe ! [qaz, qwer],
asd ! [asdf, wsx], wsx ! [2wsx,wer], asdf !
[1234, zxcv], 5678! [qwer, 1234], qa! [qwe, qaz].
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